Self-Evaluation of Trajectory Predictors for Autonomous Driving

Author:

Karle Phillip1ORCID,Furtner Lukas1,Lienkamp Markus1ORCID

Affiliation:

1. Institute of Automotive Technology, Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, 85748 Garching, Germany

Abstract

Driving experience and anticipatory driving are essential skills for humans to operate vehicles in complex environments. In the context of autonomous vehicles, the software must offer the related features of scenario understanding and motion prediction. The latter feature of motion prediction is extensively researched with several competing large datasets, and established methods provide promising results. However, the incorporation of scenario understanding has been sparsely investigated. It comprises two aspects. First, by means of scenario understanding, individual assumptions of an object’s behavior can be derived to adaptively predict its future motion. Second, scenario understanding enables the detection of challenging scenarios for autonomous vehicle software to prevent safety-critical situations. Therefore, we propose a method incorporating scenario understanding into the motion prediction task to improve adaptivity and avoid prediction failures. This is realized by an a priori evaluation of the scenario based on semantic information. The evaluation adaptively selects the most accurate prediction model but also recognizes if no model is capable of accurately predicting this scenario and high prediction errors are expected. The results on the comprehensive scenario library CommonRoad reveal a decrease in the Euclidean prediction error by 81.0% and a 90.8% reduction in mispredictions of our method compared to the benchmark model.

Funder

Bavarian Research Foundation

Institute for Automotive Technology through Basic Research Funds

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3