Sum-Rate Maximization Scheme for Multi-RIS-Assisted NOMA Uplink Systems

Author:

Qiu Debao1,Ji Jianbo2

Affiliation:

1. School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China

2. School of Electronic Information and Automation, Guilin University of Aerospace Technology, Guilin 541004, China

Abstract

Reconfigurable intelligent surface (RIS) and non-orthogonal multiple access (NOMA) are both highly promising technologies for future communication. Compared with traditional single-RIS-assisted NOMA systems, this paper considered multi-RIS-assisted NOMA uplink communication systems and proposed a sum-rate maximization scheme. At present, most research on RIS-assisted NOMA systems has not considered the joint optimization of users’ power, multi-RIS deployment, and multi-RIS phase shifts. Firstly, this paper proposed a sum-rate problem with multiple variates, which are involved in users’ power, multi-RIS deployments, and multi-RIS phase shifts. This problem is usually very complex and non-convex, which makes it very difficult to obtain an optimal solution. Then, the original problem was decomposed into three sub-problems through several derivations, which are relatively simple and easy to solve. Finally, the optimal multi-RIS deployment locations were obtained by a simulated annealing particle-swarm optimization algorithm, and a suboptimal solution based on positive semidefinite relaxation was adopted to solve the joint optimization problem of users’ power and multi-RIS phase shifts, respectively. The research results indicate that the sum-rate for the considered systems with the multi-RIS optimization algorithm can be improved by about 1 bps/Hz, compared with that of non-optimization, and under the same total number of RIS reflection units as a single-RIS scheme, the performance of the proposed scheme in this paper is superior to the single-RIS scheme, which proves the effectiveness of the proposed algorithm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3