Bad Data Repair for New Energy Stations in Power System Based on Multi-Model Parallel Integration Approach

Author:

Li Chenghao1,Liu Mingyang1,Gao Ze1,Wang Yi2,Tian Chunsun1

Affiliation:

1. State Grid Henan Electric Power Research Institute, Zhengzhou 450052, China

2. School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

The accurate and reliable acquisition of measurement information is very important for the stable operation of power systems, especially the operation status information of new energy stations. With the increasing proportion of new energy stations in power systems, the quality issues of data from these stations, caused by communication congestion, interference, and network attacks, become more pronounced. In this paper, to deal with the issue of low accuracy and poor performance of bad data restoration in new energy stations, a novel deep learning approach by combining the modified long short-term memory (LSTM) neural network and Wasserstein generative adversarial network with gradient penalty (WGAN-GP) is proposed. The proposed method can be implemented in a parallel ensemble way. First, the normal data set acquired from multiple sections of new energy stations is utilized to train the modified LSTM and WGAN-GP model. Secondly, according to the data characteristics and rules captured by each model, the two models are systematically integrated and the bad data repair model pool is constructed. Subsequently, the results of model repair are screened and merged twice by the parallel integration framework to obtain the final repair result. Finally, the extensive experiments are carried out to verify the proposed method. The simulative results of energy stations in a real provincial power grid demonstrate that the proposed method can effectively repair bad data, thereby enhancing the data quality of new energy stations.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3