Cooperative Coverage Path Planning for Multi-Mobile Robots Based on Improved K-Means Clustering and Deep Reinforcement Learning

Author:

Ni Jianjun12ORCID,Gu Yu1ORCID,Tang Guangyi1ORCID,Ke Chunyan2ORCID,Gu Yang1ORCID

Affiliation:

1. College of Artificial Intelligence and Automation, Hohai University, Changzhou 213200, China

2. College of Information Science and Engineering, Hohai University, Changzhou 213200, China

Abstract

With the increasing complexity of patrol tasks, the use of deep reinforcement learning for collaborative coverage path planning (CPP) of multi-mobile robots has become a new hotspot. Taking into account the complexity of environmental factors and operational limitations, such as terrain obstacles and the scope of the task area, in order to complete the CPP task better, this paper proposes an improved K-Means clustering algorithm to divide the multi-robot task area. The improved K-Means clustering algorithm improves the selection of the first initial clustering point, which makes the clustering process more reasonable and helps to distribute tasks more evenly. Simultaneously, it introduces deep reinforcement learning with a dueling network structure to better deal with terrain obstacles and improves the reward function to guide the coverage process. The simulation experiments have confirmed the advantages of this method in terms of balanced task assignment, improvement in strategy quality, and enhancement of coverage efficiency. It can reduce path duplication and omission while ensuring coverage quality.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3