Multi-Scale Feature Fusion Attention Network for Building Extraction in Remote Sensing Images

Author:

Liu Jia1,Gu Hang1,Li Zuhe1,Chen Hongyang1,Chen Hao1

Affiliation:

1. School of Computer Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China

Abstract

The efficient semantic segmentation of buildings in high spatial resolution remote sensing images is a technical prerequisite for land resource management, high-precision mapping, construction planning and other applications. Current building extraction methods based on deep learning can obtain high-level abstract features of images. However, the extraction of some occluded buildings is inaccurate, and as the network deepens, small-volume buildings are lost and edges are blurred. Therefore, we introduce a multi-resolution attention combination network, which employs a multiscale channel and spatial attention module (MCAM) to adaptively capture key features and eliminate irrelevant information, which improves the accuracy of building extraction. In addition, we present a layered residual connectivity module (LRCM) to enhance the expression of information at different scales through multi-level feature fusion, significantly improving the understanding of context and the capturing of fine edge details. Extensive experiments were conducted on the WHU aerial image dataset and the Massachusetts building dataset. Compared with state-of-the-art semantic segmentation methods, this network achieves better building extraction results in remote sensing images, proving the effectiveness of the method.

Funder

Henan Provincial Science and Technology Research Project

Science and Technology Innovation Project of Zhengzhou University of Light Industry

Undergraduate Universities Smart Teaching Special Research Project of Henan Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3