Chitosan-Based Quartz Crystal Microbalance for Alcohol Sensing

Author:

Triyana Kuwat,Sembiring Agustinus,Rianjanu Aditya,Hidayat Shidiq,Riowirawan Riowirawan,Julian TrisnaORCID,Kusumaatmaja Ahmad,Santoso Iman,Roto Roto

Abstract

Short-chain alcohols are a group of volatile organic compounds (VOCs) that are often found in workplaces and laboratories, as well as medical, pharmaceutical, and food industries. Real-time monitoring of alcohol vapors is essential because exposure to alcohol vapors with concentrations of 0.15–0.30 mg·L−1 may be harmful to human health. This study aims to improve the detection capabilities of quartz crystal microbalance (QCM)-based sensors for the analysis of alcohol vapors. The active layer of chitosan was immobilized onto the QCM substrate through a self-assembled monolayer of L-cysteine using glutaraldehyde as a cross-linking agent. Before alcohol analysis, the QCM sensing chip was exposed to humidity because water vapor significantly interferes with QCM gas sensing. The prepared QCM sensor chip was tested for the detection of four different alcohols: n-propanol, ethanol, isoamyl alcohol, and n-amyl alcohol. For comparison, a non-alcohol of acetone was also tested. The prepared QCM sensing chip is selective to alcohols because of hydrogen bond formation between the hydroxyl groups of chitosan and the analyte. The highest response was achieved when the QCM sensing chip was exposed to n-amyl alcohol vapor, with a sensitivity of about 4.4 Hz·mg−1·L. Generally, the sensitivity of the QCM sensing chip is dependent on the molecular weight of alcohol. Moreover, the developed QCM sensing chips are stable after 10 days of repeated measurements, with a rapid response time of only 26 s. The QCM sensing chip provides an alternative method to established analytical methods such as gas chromatography for the detection of short-chain alcohol vapors.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3