Author:
Lei Ziwei,Yang Peng,Zheng Linhua
Abstract
It is challenging to detect and track frequency hopping spread spectrum (FHSS) signals due to their wideband frequencies and the limitations of current hardware. In the implementation, there has been a trend of conducting compressive sensing for blind signal processing of FHSS signals. The modulated wideband converter (MWC) is a type of sub-Nyquist sampling system, which accomplishes the recovery of highly accurate broadband sparse signals by multichannel sub-Nyquist sampling sequences. However, it is difficult to adjust MWC to FHSS signals, because the support set and sparsity change with the hop. In this paper, we propose a channelized MWC scheme in order to solve these problems. First, the proposed method distributes the sub-bands to different channels. We can derive and refresh the frequency support set rapidly without recovery. Secondly, by reconstructing the low-pass filter and decimation, we reduced the computational cost to 1/m as the traditional m-channel MWC scheme, where m is the number of channels. Moreover, we propose a series of strategies to estimate carrier frequency. The numerical simulations show that our method can detect the channel, which contains FHSS signals in the case of a low signal-to-noise ratio. Furthermore, the estimation method leads to the successful estimation of the FHSS carrier frequency. This indicates that our method is also effective in the broadband non-cooperative spectrum sensing.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献