A Novel Induction Heater for Sintering Metal Compacts with a Hybrid Material Extrusion Device

Author:

Vilchez Neils12ORCID,Ortega Varela de Seijas Manuel1ORCID,Bardenhagen Andreas1ORCID,Rohr Thomas3ORCID,Stoll Enrico1ORCID

Affiliation:

1. Institute of Aeronautics and Astronautics, Technische Universität Berlin, Marchstr. 12-14, 10587 Berlin, Germany

2. Institute for Radioastronomy, Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, Lima 15088, Peru

3. European Space Agency (ESA), 2201 AA Noordwijk, The Netherlands

Abstract

The traditional sintering of metallic components shaped via Material Extrusion Additive Manufacturing (MEAM) is a time-consuming process that involves sophisticated energy-intensive heating systems. This work describes a novel induction heater capable of efficiently tailoring temperature profiles to densify MEAM powder compacts. In situ sintering within the same device is achieved indirectly by heating a graphite crucible, whereby the heater is based on an inverter with a half-bridge topology using the Zero-Voltage Switching (ZVS) technique. The system comprises a bank of capacitors that, in conjunction with a work coil, form a parallel-topology resonant circuit. This design allows the inverter to be used as a current amplifier, thereby increasing its efficiency to deliver an output power of up to 5 kW. The device operates at a 62.86 kHz resonant frequency, achieving a 2.01 mm penetration depth and a 1365.7 °C crucible temperature with only 1.313 kW of consumption, providing an increase in efficiency compared to other low-cost systems. Equipped with a feedback circuit, it offers five distinct control techniques that enable the self-tuning of the crucible temperature. The results indicate that the Cohen–Coon tuning method is more robust compared to the Ziegler–Nichols, damped, no overshoot, and mixed techniques. Sintering with this novel induction heater provides an alternative method for reducing the processing times for MEAM geometries, paving the way for increased efficiency and reduced energy consumption. Circuit diagrams, simulations, and experimental data on the temperature, time, and output voltage are provided in this article.

Funder

European Space Agency

German Research Foundation

Open Access Publication Fund of TU Berlin

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3