NOMA or OMA in Delay-QoS Limited Satellite Communications: Effective Capacity Analysis

Author:

Yan Xiaojuan12ORCID,An Kang3,Zhang Qianfeng1,Du Bo1

Affiliation:

1. Guangxi Key Laboratory of Ocean Engineering Equipment and Technology, Qinzhou 535011, China

2. Key Laboratory of Beibu Gulf Offshore Engineering Equipment and Technology (Beibu Gulf University), Education Department of Guangxi Zhuang Autonomous Region, Qinzhou 535011, China

3. Sixty-Third Research Institute, National University of Defense Technology, Nanjing 210007, China

Abstract

In this paper, we theoretically study the achievable capacity of orthogonal and non-orthogonal multiple access (OMA and NOMA) schemes in supporting downlink satellite communication networks. Considering that various satellite applications have different delay quality-of-service (QoS) requirements, the concept of effective capacity is introduced as a delay-guaranteed capacity metric to represent users’ various delay requirements. Specifically, the analytical expressions of effective capacities for each user achieved with the NOMA and OMA schemes are first studied. Then, approximated effective capacities achieved in some special cases, exact closed-form expressions of users’ achievable effective capacity, and the capacity difference between NOMA and OMA schemes are derived. Simulation results are finally provided to validate the theoretical analysis and show the suitable limitations of the NOMA and OMA schemes, such as the NOMA scheme is more suitable for users with better channel quality when transmit signal-to-noise (SNR) is relatively large, while it is suitable for users with worse link gain when transmit SNR is relatively small. Moreover, the influences of delay requirements and key parameters on user selection strategy and system performance are also shown in the simulations.

Funder

Guangxi Natural Science Foundation

Scientific Research Foundation of Beibu Gulf University

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3