Traffic Sign Recognition Based on Bayesian Angular Margin Loss for an Autonomous Vehicle

Author:

Kim Taehyeon1ORCID,Park Seho1,Lee Kyoungtaek1

Affiliation:

1. Contents Convergence Research Center, Korea Electronics Technology Institute, Seoul 03924, Republic of Korea

Abstract

Traffic sign recognition is a pivotal technology in the advancement of autonomous vehicles as it is critical for adhering to country- or region-specific traffic regulations. Defined as an image classification problem in computer vision, traffic sign recognition is a technique that determines the class of a given traffic sign from input data processed by a neural network. Although image classification has been considered a relatively manageable task with the advent of neural networks, traffic sign classification presents its own unique set of challenges due to the similar visual features inherent in traffic signs. This can make designing a softmax-based classifier problematic. To address this challenge, this paper presents a novel traffic sign recognition model that employs angular margin loss. This model optimizes the necessary hyperparameters for the angular margin loss via Bayesian optimization, thereby maximizing the effectiveness of the loss and achieving a high level of classification performance. This paper showcases the impressive performance of the proposed method through experimental results on benchmark datasets for traffic sign classification.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3