The DC Inductor Current Ripple Reduction Method for a Two-Stage Power Conversion System

Author:

Kim Hyeong-Jin1ORCID,Park Yong-Min2ORCID,Son Yung-Deug3ORCID,Kang Jae-Beom14ORCID,Lee Ji-Young14ORCID,Kim Jang-Mok5

Affiliation:

1. Air Mobility Electric-Motor & Drive Research Team, Korea Electrotechnology Research Institute, Changwon 51543, Republic of Korea

2. Battery Research Center, BNY Energy, Ulsan 44428, Republic of Korea

3. Department of Mechanical Facility Control Engineering, Korea University of Technology and Education, Cheonan 31253, Republic of Korea

4. Energy and Power Conversion Engineering Department, Korea University of Science and Technology, Daejeon 34113, Republic of Korea

5. Department of Electrical Engineering, Pusan National University, Busan 46241, Republic of Korea

Abstract

This paper proposes a method for minimizing the inductor current ripple of a DC–DC converter in a two-stage power conversion system consisting of a grid-connected PWM converter and an interleaved multiphase three-level DC–DC converter. To reduce the output voltage ripple, the three-level DC–DC converter is configured in parallel and operated interleaved. However, a circulating current generated by the interleaved operation increases the inductor current ripple of each DC–DC converter and causes system loss and inductor saturation. In this paper, the inductor and output current ripple of the interleaved three-phase three-level DC–DC converter is mathematically analyzed and the effect of the DC–DC converter’s duty ratio and output voltage on each current ripple is described. Based on this analysis, a method is proposed for controlling the optimal DC link voltage through the PWM converter, so that the DC–DC converter is controlled with the duty ratio that minimizes the inductor current ripple. The simulation and experimental results under various operating conditions are presented to verify the feasibility of the proposed control method.

Funder

MSIT/NST

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3