Dynamic Health Monitoring of Aero-Engine Gas-Path System Based on SFA-GMM-BID

Author:

Li Dewen1,Li Yang1,Zhang Tianci12,Cai Jing2,Zuo Hongfu2,Zhang Ying12

Affiliation:

1. College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China

2. School of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

This paper proposes a dynamic health monitoring method for aero-engines by extracting more hidden information from the raw values of gas-path parameters based on slow feature analysis (SFA) and the Gaussian mixture model (GMM) to improve the capability of detecting gas-path faults of aero-engines. First, an SFA algorithm is used to process the raw values of gas-path parameters, extracting the effective features reflecting the slow variation of the gas-path state. Then, a GMM is established based on the slow features of the target aero-engine in a normal state to measure its health status. Moreover, an indicator based on the Bayesian inference distance (BID) is constructed to quantitatively characterize the performance degradation degree of the target aero-engine. Considering that the fixed threshold does not suit the time-varying characteristics of the gas-path state, a dynamic threshold based on the maximum information coefficient is designed for aero-engine health monitoring. The proposed method is verified using a set of actual operation data of a certain aero-engine. The results show that the proposed method can better reflect the degradation process of the aero-engine and identify aero-engine anomalies earlier than other aero-engine fault detection methods. In addition, the dynamic threshold can reduce the occurrence of false alarms. All these advantages give the proposed method high value in real-world applications.

Funder

Joint Funds of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3