Research on a Knowledge Graph Embedding Method Based on Improved Convolutional Neural Networks for Hydraulic Engineering

Author:

Liu Yang1,Tian Jiayun2,Liu Xuemei2,Tao Tianran2,Ren Zehong2,Wang Xingzhi2,Wang Yize2

Affiliation:

1. Provincial Collaborative Innovation Center for Efficient Utilization of Water Resources in the Yellow River Basin, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

2. School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

Abstract

In response to the shortcomings of existing knowledge graph embedding strategies, such as weak feature interaction and latent knowledge representation, a unique hydraulic knowledge graph embedding method is suggested. The proposed method incorporates spatial position features into the entity-relation embedding process, thereby enhancing the representation capability of latent knowledge. Furthermore, it utilizes a multi-layer convolutional neural network to fuse features at different levels, effectively capturing more abundant semantic information. Additionally, the method employs multi-scale dilated convolution kernels to capture rich explicit interaction features across different scales of space. In this study, the effectiveness of the proposed model was validated on the link prediction task. Experimental results demonstrated that, compared to the ConvE model, the proposed model achieved a significant improvement of 14.8% in terms of mean reciprocal rank (MRR) on public datasets. Additionally, the suggested model outperformed the ConvR model on the hydraulic dataset, leading to a 10.1% increase in MRR. The results indicate that the proposed approach exhibits good applicability and performance in the task of hydraulic knowledge graph complementation. This suggests that the method has the potential to offer significant assistance for knowledge discovery and application research in the field of hydraulics.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3