Enhanced-Deep-Residual-Shrinkage-Network-Based Voiceprint Recognition in the Electric Industry

Author:

Zhang Qingrui1,Zhai Hongting1,Ma Yuanyuan2,Sun Lili1,Zhang Yantong1,Quan Weihong1,Zhai Qi1,He Bangwei2,Bai Zhiquan2

Affiliation:

1. Information and Telecommunications Branch, State Grid Shandong Electric Power Company, Jinan 250001, China

2. School of Information Science and Engineering, Shandong University, Qingdao 266237, China

Abstract

Voiceprint recognition can extract voice features and identity the speaker through the voice information, which has great application prospects in personnel identity verification and voice dispatching in the electric industry. The traditional voiceprint recognition algorithms work well in a quiet environment. However, noise interference inevitably exists in the electric industry, degrading the accuracy of traditional voiceprint recognition algorithms. In this paper, we propose an enhanced deep residual shrinkage network (EDRSN)-based voiceprint recognition by combining the traditional voiceprint recognition algorithms with deep learning (DL) in the context of the noisy electric industry environment, where a dual-path convolution recurrent network (DPCRN) is employed to reduce the noise, and its structure is also improved based on the deep residual shrinkage network (DRSN). Moreover, we further use a convolutional block attention mechanism (CBAM) module and a hybrid dilated convolution (HDC) in the proposed EDRSN. Simulation results show that the proposed network can enhance the speaker’s vocal features and further distinguish and eliminate the noise features, thus reducing the noise influence and achieving better recognition performance in a noisy electric environment.

Funder

State Grid Corporation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3