Affiliation:
1. Department of Electronics and Communication Engineering, University Institute of Technology RGPV, Bhopal 462033, India
Abstract
This paper presents a novel speech enhancement approach based on compressive sensing (CS) which uses long short-term memory (LSTM) networks for the simultaneous recovery and enhancement of the compressed speech signals. The advantage of this algorithm is that it does not require an iterative process to recover the compressed signals, which makes the recovery process fast and straight forward. Furthermore, the proposed approach does not require prior knowledge of signal and noise statistical properties for sensing matrix optimization because the used LSTM can directly extract and learn the required information from the training data. The proposed technique is evaluated against white, babble, and f-16 noises. To validate the effectiveness of the proposed approach, perceptual evaluation of speech quality (PESQ), short-time objective intelligibility (STOI), and signal-to-distortion ratio (SDR) were compared to other variants of OMP-based CS algorithms The experimental outcomes show that the proposed approach achieves the maximum improvements of 50.06%, 43.65%, and 374.16% for PESQ, STOI, and SDR respectively, over the different variants of OMP-based CS algorithms.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献