A Short-Text Similarity Model Combining Semantic and Syntactic Information

Author:

Zhou Ya1,Li Cheng12,Huang Guimin12,Guo Qingkai12,Li Hui12,Wei Xiong12

Affiliation:

1. School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China

2. Guangxi Key Laboratory of Image and Graphic Intelligent Processing, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

As one of the prominent research directions in the field of natural language processing (NLP), short-text similarity has been widely used in search recommendation and question-and-answer systems. Most of the existing short textual similarity models focus on considering semantic similarity while overlooking the importance of syntactic similarity. In this paper, we first propose an enhanced knowledge language representation model based on graph convolutional networks (KEBERT-GCN), which effectively uses fine-grained word relations in the knowledge base to assess semantic similarity and model the relationship between knowledge structure and text structure. To fully leverage the syntactic information of sentences, we also propose a computational model of constituency parse trees based on tree kernels (CPT-TK), which combines syntactic information, semantic features, and attentional weighting mechanisms to evaluate syntactic similarity. Finally, we propose a comprehensive model that integrates both semantic and syntactic information to comprehensively evaluate short-text similarity. The experimental results demonstrate that our proposed short-text similarity model outperforms the models proposed in recent years, achieving a Pearson correlation coefficient of 0.8805 on the STS-B dataset.

Funder

National Natural Science Foundation of China

Guangxi Key Research & Development Program

The Key Research and Development Project of Guilin

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference56 articles.

1. Information extraction meets the semantic web: A survey;Hogan;Semant. Web,2020

2. Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., and Yih, W.T. (2020). Dense passage retrieval for open-domain question answering. arXiv.

3. Deep learning–based text classification: A comprehensive review;Minaee;ACM Comput. Surv. CSUR,2021

4. Evolution of semantic similarity—A survey;Chandrasekaran;ACM Comput. Surv. CSUR,2021

5. Devlin, J., Chang, M.W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3