A Novel UAV-Assisted Multi-Mobility Channel Model for Urban Transportation Emergency Communications

Author:

Liang Jinfan1,Huang Xun1,Xu Qiwang1,Liu Yu1,Zhang Jingfan1ORCID,Huang Jie23

Affiliation:

1. School of Microelectronics, Shandong University, Jinan 250101, China

2. The National Mobile Communications Research Laboratory, School of Information Science and Engineering, Southeast University, Nanjing 210096, China

3. The Purple Mountain Laboratories, Nanjing 211111, China

Abstract

With the increasing requirements for unmanned aerial vehicle (UAV) communication in various application scenarios, the UAV-assisted emergency communication in urban transportation scenario has received great attention. In this paper, a novel UAV-assisted UAV-to-vehicle (U2V) geometry-based stochastic model (GBSM) for the urban traffic communication scenario is proposed. The three-dimensional (3D) multi-mobilities of the transmitter (Tx), receiver (Rx), and clusters are considered by introducing the time-variant acceleration and velocity correspondingly. The velocity variation of the clusters is used to simulate the motion of vehicles around the Rx. Moreover, to describe the vehicles’ moving states, Markov chain is adopted to analyze the changes in cluster motion states, including survival, death, dynamic, and static states. By adjusting the scenario-specific parameters, such as the vehicle density (ρ) and dynamic–static ratio (Ω), the model can support various urban traffic scenarios. Based on the proposed model, several key statistical properties, namely the root mean square (RMS) delay spread, temporal autocorrelation function (ACF), level-crossing rate (LCR), power delay profile (PDP), and stationary interval, under different clusters and antenna accelerations are obtained and analyzed. The accuracy of the proposed model is verified by the measured data. The results demonstrate the usability of our model, which can be provided as a reference for the design, evaluation, and optimization of future communication networks between UAV and vehicles in urban transportation emergency communications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3