PC-SC: A Predictive Channel-Based Semantic Communication System for Sensing Scenarios

Author:

Sun Yutong1ORCID,Zhang Jianhua1,Wang Jialin1,Yu Li1,Zhang Yuxiang1ORCID,Liu Guangyi2,Xie Guofu3,Li Ji4

Affiliation:

1. State Key Lab of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Future Research Laboratory, China Mobile Research Institute, Beijing 100053, China

3. Hunan Xiangjiang Intelligent Science and Technology Innovation Center Co., Ltd., Changsha 410000, China

4. The State Radio Monitoring_Center Testing Center, Beijing 100037, China

Abstract

Due to its significant efficiency, semantic communication emerges as a promising technique for sixth-generation (6G) networks. The wireless propagation channel plays a crucial role in system design, as it directly impacts transmission performance and capability. Given the increasingly complex communication scenarios, the channel exhibits high dynamism and poses challenges in acquisition. In such cases, sensing-based methods have drawn significant attention. To enhance system robustness, we propose a predictive channel-based semantic communication (PC-SC) system tailored for sensing scenarios. The PC-SC system is designed with an orientation toward applications by directly taking semantic targets into account. It comprises three modules: transmitter, predictive channel, and receiver. Firstly, at the transmitter, instead of employing global semantic coding, the scheme emphasizes preserving semantic information through target-based semantic extraction. Secondly, the channel prediction module predicts the dynamic wireless channel by utilizing the extracted target-based semantic information. Finally, at the receiver, the target-based semantic information can be utilized to meet specific application requirements. Alternatively, pre-captured background and semantic targets can be composited to fulfill complete image reconstruction needs. We evaluate the proposed approach by using a sensing image transmission scenario as a case study. Experimental results demonstrate the superiority of the PC-SC system in terms of image reconstruction performance and cost savings of bit. We employ beam prediction as a channel prediction task and find that the targets-based method outperforms the complete image-based approach in terms of efficiency and robustness, which can provide 32% time-saving.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Beijing University of Posts and Telecommunications—China Mobile Research Institute Joint Innovation Center

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3