Millimeter-Wave Conformal Directional Leaky-Wave Antenna Based on Substrate-Integrated Waveguide

Author:

Ma Yuchen1ORCID,Shi Xiaoya2,Wang Junhong2,Zhang Yu1ORCID,Sun Fanqi2ORCID,Wu Fan3

Affiliation:

1. China Academy of Information and Communications Technology, Beijing 100191, China

2. Key Laboratory of All Optical Network and Advanced Telecommunication Network of MOE, Beijing Jiaotong University, Beijing 100044, China

3. State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 211189, China

Abstract

Conformal antennas have been widely used in many fields due to their advantages of low air resistance and better visual appearance. In this paper, an arced conformal leaky-wave antenna (LWA) for a designable directional beam is proposed. The antenna is achieved based on a substrate-integrated waveguide (SIW). On the upper surface, a series of non-uniform transverse slots are etched. In order to guide the design of the antenna, as another key contribution of this work, a theoretical model for the traveling-wave structure is established. Using the model, the radiation property of the LWA is analyzed. In addition, by inputting the desired beam direction, the structural parameters of the LWA can be generated through the model. To verify the performance of the antenna and the model, an LWA prototype working at 28 GHz was fabricated and tested in a microwave anechoic chamber. The experimental results are in good agreement with the simulation results. The antenna achieved a gain of 9.96 dBi with cambered surface area of 1.89 λ02. The proposed method may be a promising candidate for conformal wireless communication applications.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3