A 13.56 MHz Low-Power, Single-Stage CMOS Voltage-Boosting Rectifier for Wirelessly Powered Biomedical Implants

Author:

Hosseini Seyed Morteza1ORCID,Maghami Mohammad Hossein1ORCID,Amiri Parviz2,Sawan Mohamad3ORCID

Affiliation:

1. Research Laboratory for Integrated Circuits, Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran 16788-15811, Iran

2. Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran 16788-15811, Iran

3. Center of Excellence in Biomedical Research on Advanced Integrated-on-Chips Neurotechnologies (CenBRAIN Neurotech), School of Engineering, Westlake University, Hangzhou 310030, China

Abstract

In this paper, a low-power, single-stage, active rectifier based on a new charge-pump circuit is presented to be used in biomedical implants. The proposed circuit not only rectifies the AC input voltage to a DC voltage but also amplifies the DC output voltage to a higher level. Low-loss MOS switches are used in the structure of the designed circuit to provide high power conversion efficiency. In addition, by using two comparators, the reverse leakage current is somehow eliminated, resulting in a higher increase in the power efficiency. By tying the source and bulk terminals of the utilized transistors, the body effect problem has been solved, and by connecting the p-substrate to the ground, which is the lowest voltage in the circuit, the latch-up phenomenon is eliminated without any extra circuit. The proposed rectifier is implemented and post-layout simulated in a 0.18 µm standard CMOS technology. According to the simulation results, 1.205 V output DC voltage is achieved from an AC input signal with the peak-to-peak amplitude of 1 V at the operating frequency of 13.56 MHz with a 3 kΩ load resistance. The total active area of the designed circuit is 0.167 mm2 with a maximum power conversion efficiency of 98.2%, output power in the range of 0.5–1.5 mW, and voltage conversion ratio of 120%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3