Research on Perception and Control Technology for Dexterous Robot Operation

Author:

Zhang Tengteng1,Mo Hongwei1

Affiliation:

1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

Robotic grasping in cluttered environments is a fundamental and challenging task in robotics research. The ability to autonomously grasp objects in cluttered scenes is crucial for robots to perform complex tasks in real-world scenarios. Conventional grasping is based on the known object model in a structured environment, but the adaptability of unknown objects and complicated situations is constrained. In this paper, we present a robotic grasp architecture of attention-based deep reinforcement learning. To prevent the loss of local information, the prominent characteristics of input images are automatically extracted using a full convolutional network. In contrast to previous model-based and data-driven methods, the reward is remodeled in an effort to address the sparse rewards. The experimental results show that our method can double the learning speed in grasping a series of randomly placed objects. In real-word experiments, the grasping success rate of the robot platform reaches 90.4%, which outperforms several baselines.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference33 articles.

1. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv.

2. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver, D., and Kavukcuoglu, K. (2016, January 19). Asynchronous methods for deep reinforcement learning. Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA.

3. Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M., and Vanhoucke, V. (2018). Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation. arXiv.

4. Joshi, S., Kumra, S., and Sahin, F. (2020, January 20). Robotic grasping using deep reinforcement learning. Proceedings of the 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), Hong Kong, China.

5. Berscheid, L., Rühr, T., and Kröger, T. (2019, January 12). Improving data efficiency of self-supervised learning for robotic grasping. Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3