1. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv.
2. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver, D., and Kavukcuoglu, K. (2016, January 19). Asynchronous methods for deep reinforcement learning. Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA.
3. Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M., and Vanhoucke, V. (2018). Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation. arXiv.
4. Joshi, S., Kumra, S., and Sahin, F. (2020, January 20). Robotic grasping using deep reinforcement learning. Proceedings of the 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), Hong Kong, China.
5. Berscheid, L., Rühr, T., and Kröger, T. (2019, January 12). Improving data efficiency of self-supervised learning for robotic grasping. Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada.