A Joint Strategy for Fair and Efficient Energy Usage in WLANs in the Presence of Capture Effect

Author:

Khan Bilal,Rehman Rana,Kim Byung-SeoORCID

Abstract

Capture effect has been shown as a physical layer (PHY) phenomenon of modern wireless devices that improves the performance of wireless local area networks (WLANs) in terms of throughput. In this paper, however, we explore the effect of PHY capture in the domain of energy efficiency. Analysis model that takes into account the effect of PHY capture is backed up by ns-2 simulations show that capture effect improves energy efficiency of WLAN by 20%. This improvement, however, results in unfairness, i.e, a group of nodes located far away from the Access Point (AP) is three times less energy efficient than the group of nodes located closer to the AP. To resolve the unfairness caused by the capture effect, furthermore, this paper proposes a joint strategy of adaptive transmission power control (ATXPR) and contention window adjustment (CWADJ). Namely, a node that suffers transmission failure due to another node capturing the channel steps up its transmission power according to the transmission power control algorithm and refrains from increasing its contention window according to contention window adjustment mechanism, respectively. Our proposed joint strategy is 99% fair while maintaining overall energy efficiency of the network.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference32 articles.

1. SMART2020: Enabling the Low-Carbon Economy in the Information Agehttp://www.smart2020.org

2. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3