Hybrid PWM Strategy for Power Efficiency Improvement of 5-Level TNPC Inverter and Current Distortion Compensation Method

Author:

Lee Taeyeong,Bu Hanyoung,Cho YounghoonORCID

Abstract

This paper proposes a pulse width modulation (PWM) strategy for improving the efficiency of a 5-level H-bridge T-type neutral point clamped (TNPC) inverter. In the case of the proposed PWM strategy, unlike the conventional PWM strategy in which both of the switching legs of the H-bridge inverter operate at a high frequency, one switching leg of the inverter operates at a low frequency. As the switching frequency is lowered, the switching loss is reduced, this improving the efficiency of the system. The duty references for the switching legs and the operating principle of the inverter are described in detail. The proposed PWM strategy, however, causes distortion of the output filter inductor current. The cause of the distortion has been analyzed and a compensation method is proposed to mitigate the distortion of the current. The effect of the proposed PWM strategy can be predicted through the loss calculation of the inverter for each modulation strategy. Furthermore, current distortion mitigation obtained by compensation method is confirmed through the simulation. In order to verify the effectiveness of the proposed strategy, a 2 kW H-bridge TNPC inverter prototype is implemented and tested. The simulation and experimental results show that the efficiency of the inverter is improved when the proposed PWM strategy is applied.

Funder

Korea Institute of Energy Technology Evaluation and Planning

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synthesis of a System for Adapting and Feeding a Consumer Without Access to the LV Network;2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG);2020-07

2. Five-Level T-type Cascade Converter for Rooftop Grid-Connected Photovoltaic Systems;Energies;2019-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3