Author:
Rahman Atta,Syed Irtaza,Ullah Mukhtar
Abstract
The growth of power-electronic-based components is inescapable in future distribution grids (DGs). The introduction of these non-linear components poses many challenges, not only in terms of power quality, but also in terms of stability. These challenges become more acute when active loads are behaving as generators and power is flowing in reverse direction. The frequency-domain-based impedance modeling methods are preferred for small signal stability analysis (SSSA) of DGs involving such non-linear components. The harmonic linearization method can be used for impedance estimation, and afterwards, the Nyquist stability criterion can be used for stability analysis. In this paper, a parametric-based stability analysis of grid-connected active loads at the point of common coupling (PCC) is done by changing the parallel clustering distance and size of active loads. The results verify a positive impact on the stability of increasing parallel clustering and distance from the PCC and a negative impact of increasing the size of individual active loads.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献