An Oscillatory Neural Network Based Local Processing Unit for Pattern Recognition Applications

Author:

Zhang Ting,Haider Mohammad R.ORCID,Massoud Yehia,Alexander J. Iwan D.

Abstract

Prolific growth of sensors and sensor technology has resulted various applications in sensing, monitoring, assessment and control operations. Owing to the large number of sensing units the the aggregate data volume creates a burden to the central data processing unit. This paper demonstrates an analog computational platform using weakly coupled oscillator neural network for pattern recognition applications. The oscillator neural network (ONN) has been studied over the last couple of decades for it’s increasing computational efficiency. The coupled ONN can realize the classification and pattern recognition functionalities based on its synchronization phenomenon. The convergence time and frequency of synchronization are considered as the indicator of recognition. For hierarchical sensing, the synchronization is detected in the first layer, and then the classification is accomplished in the second layer. In this work, a Kuramoto model based frequency synchronization approach is utilized, and simulation results indicate less than 160 ms convergence time and close frequency match for a simplified pattern recognition application. An array of 10 sensors is considered to affect the coupling weights of the oscillating nodes, and demonstrate network level computation. Based on MATLAB simulations, the proposed ONN architecture can successfully detect the close-in-match pattern through synchronization, and differentiate the far-out-match pattern through loss of synchronization in the oscillating nodes.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference42 articles.

1. The Internet of Things: Sizing Up the Opportunity. Section: The Technological Challenges https://www.mckinsey.com/industries/semiconductors/our-insights/the-internet-of-things-sizing-up-the-opportunity

2. A Link to the Internet-of-Things, White Paper, Texas Instruments http://www.ti.com/lit/wp/swry009/swry009.pdf

3. A low-voltage low-power injection-locked oscillator for wearable health monitoring systems

4. Low-Power Low-Voltage Current Readout Circuit for Inductively Powered Implant System

5. LOW-POWER BIOMEDICAL SIGNAL MONITORING SYSTEM FOR IMPLANTABLE SENSOR APPLICATIONS

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3