A Novel Dataset and Approach for Adversarial Attack Detection in Connected and Automated Vehicles

Author:

Kim Tae Hoon1,Krichen Moez2,Alamro Meznah A.3ORCID,Sampedro Gabreil Avelino4ORCID

Affiliation:

1. School of Information and Electronic Engineering, Zhejiang University of Science and Technology, No. 318, Hangzhou 310023, China

2. ReDCAD Laboratory, University of Sfax, Sfax 3038, Tunisia

3. Department of Information Technology, College of Computer & Information Science, Princess Nourah Bint Abdul Rahman University, Riyadh 11564, Saudi Arabia

4. School of Management and Information Technology, De La Salle—College of Saint Benilde, Manila 1004, Philippines

Abstract

Adversarial attacks have received much attention as communication network applications rise in popularity. Connected and Automated Vehicles (CAVs) must be protected against adversarial attacks to ensure passenger and vehicle safety on the road. Nevertheless, CAVs are susceptible to several types of attacks, such as those that target intra- and inter-vehicle networks. These harmful attacks not only cause user privacy and confidentiality to be lost, but they also have more grave repercussions, such as physical harm and death. It is critical to precisely and quickly identify adversarial attacks to protect CAVs. This research proposes (1) a new dataset comprising three adversarial attacks in the CAV network traffic and normal traffic, (2) a two-phased adversarial attack detection technique named TAAD-CAV, where in the first phase, an ensemble voting classifier having three machine learning classifiers and one separate deep learning classifier is trained, and the output is used in the next phase. In the second phase, a meta classifier (i.e., Decision Tree is used as a meta classifier) is trained on the combined predictions from the previous phase to detect adversarial attacks. We preprocess the dataset by cleaning data, removing missing values, and adjusting the Z-score normalization. Evaluation metrics such as accuracy, recall, precision, F1-score, and confusion matrix are employed to evaluate and compare the performance of the proposed model. Results reveal that TAAD-CAV achieves the highest accuracy with a value of 70% compared with individual ML and DL classifiers.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3