Affiliation:
1. Faculty of Automatic Control, Robotics and Electrical Engineering, Poznan University of Technology, 60-965 Poznań, Poland
Abstract
Accurate vibration classification using inertial measurement unit (IMU) data is critical for various applications such as condition monitoring and fault diagnosis. This study proposes a novel convolutional neural network (CNN) based approach, the IMU6DoF-SST-CNN in six variants, for robust vibration classification. The method utilizes Fourier synchrosqueezed transform (FSST) and wavelet synchrosqueezed transform (WSST) for time-frequency analysis, effectively capturing the temporal and spectral characteristics of the vibration data. Additionally, was used the IMU6DoF-SST-CNN to explore three different fusion strategies for sensor data to combine information from the IMU’s multiple axes, allowing the CNN to learn from complementary information across various axes. The efficacy of the proposed method was validated using three datasets. The first dataset consisted of constant fan velocity data (three classes: idle, normal operation, and fault) at 200 Hz. The second dataset contained variable fan velocity data (also with three classes: normal operation, fault 1, and fault 2) at 2000 Hz. Finally, a third dataset of Case Western Reserve University (CWRU) comprised bearing fault data with thirteen classes, sampled at 12 kHz. The proposed method achieved a perfect validation accuracy for the investigated vibration classification task. While all variants of the method achieved high accuracy, a trade-off between training speed and image generation efficiency was observed. Furthermore, FSST demonstrated superior localization capabilities compared to traditional methods like continuous wavelet transform (CWT) and short-time Fourier transform (STFT), as confirmed by image representations and interpretability analysis. This improved localization allows the CNN to effectively capture transient features associated with faults, leading to more accurate vibration classification. Overall, this study presents a promising and efficient approach for vibration classification using IMU data with the proposed IMU6DoF-SST-CNN method. The best result was obtained for IMU6DoF-SST-CNN with FSST and sensor-type fusion.
Funder
Poznan University of Technology