Improving Training Dataset Balance with ChatGPT Prompt Engineering

Author:

Kochanek Mateusz1ORCID,Cichecki Igor1,Kaszyca Oliwier1ORCID,Szydło Dominika1,Madej Michał1,Jędrzejewski Dawid1,Kazienko Przemysław1ORCID,Kocoń Jan1ORCID

Affiliation:

1. Department of Artificial Intelligence, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland

Abstract

The rapid evolution of large language models, in particular OpenAI’s GPT-3.5-turbo and GPT-4, indicates a growing interest in advanced computational methodologies. This paper proposes a novel approach to synthetic data generation and knowledge distillation through prompt engineering. The potential of large language models (LLMs) is used to address the problem of unbalanced training datasets for other machine learning models. This is not only a common issue but also a crucial determinant of the final model quality and performance. Three prompting strategies have been considered: basic, composite, and similarity prompts. Although the initial results do not match the performance of comprehensive datasets, the similarity prompts method exhibits considerable promise, thus outperforming other methods. The investigation of our rebalancing methods opens pathways for future research on leveraging continuously developed LLMs for the enhanced generation of high-quality synthetic data. This could have an impact on many large-scale engineering applications.

Funder

National Science Centre, Poland

Polish Ministry of Education and Science

Publisher

MDPI AG

Reference61 articles.

1. OpenAI (2024, April 04). Introduction of ChatGPT Chatbot. Available online: https://openai.com/blog/chatgpt.

2. Manyika, J. (2024, April 04). An Overview of Bard: An Early Experiment with Generative AI. Available online: https://ai.google/static/documents/google-about-bard.pdf.

3. Attention is All you Need;Guyon;Proceedings of the Advances in Neural Information Processing Systems,2017

4. Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving Language Understanding by Generative Pre-Training, OpenAI.

5. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language Models Are Unsupervised Multitask Learners, OpenAI.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3