Hierarchical Inverse Distance Transformer for Enhanced Localization in Dense Crowds

Author:

Qiu Xiangfeng12,Ye Jin1,Chen Siyu1,Su Jinhe1ORCID

Affiliation:

1. School of Computer Engineering, Jimei University, Xiamen 361021, China

2. Xiamen Kingtop Information Technology Co., Ltd., Xiamen 361008, China

Abstract

Achieving precise individual localization within densely crowded scenes poses a significant challenge due to the intricate interplay of occlusions and varying density patterns. Traditional methods for crowd localization often rely on convolutional neural networks (CNNs) to generate density maps. However, these approaches are prone to inaccuracies stemming from the extensive overlaps inherent in dense populations. To overcome this challenge, our study introduces the Hierarchical Inverse Distance Transformer (HIDT), a novel framework that harnesses the multi-scale global receptive fields of Pyramid Vision Transformers. By adapting to the multi-scale characteristics of crowds, HIDT significantly enhances the accuracy of individual localization. Incorporating Focal Inverse Distance techniques, HIDT adeptly addresses issues related to scale variation and dense overlaps, prioritizing local small-scale features within the broader contextual understanding of the scene. Rigorous evaluation on standardized benchmarks has unequivocally validated the superiority of our approach. HIDT exhibits outstanding performance across various datasets. Notably, on the JHU-Crowd++ dataset, our method demonstrates significant improvements over the baseline, with MAE and MSE metrics decreasing from 66.6 and 253.6 to 59.1 and 243.5, respectively. Similarly, on the UCF-QNRF dataset, performance metrics increase from 89.0 and 153.5 to 83.6 and 138.7, highlighting the effectiveness and versatility of our approach.

Funder

Natural Science Foundation of Xiamen, China

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3