Affiliation:
1. Department of Mobile Communication and Terminal Technology, China Telecom Research Institute, Beijing 100033, China
2. National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract
Unmanned aerial vehicle (UAV) communications have gained recognition as a promising technology due to their unique characteristics of rapid deployment and flexible configuration. Meanwhile, device-to-device (D2D) and full-duplex (FD) technologies have emerged as promising methods for enhancing spectral efficiency and offloading traffic. One significant advantage of UAVs is their ability to partition suitable D2D pairs to increase cell capacity. In this paper, we present a novel network model in which UAVs are considered D2D pairs underlaying cellular networks, integrating FD into the communication links between UAVs to improve spectral efficiency. We then investigate a resource allocation problem for the proposed FD-UAV D2D underlaying structure model, with the objective of maximizing the system’s sum rate. Specifically, the UAVs in our model operate in full-duplex mode as D2D users (DUs), allowing the reuse of both the uplink and downlink subcarrier resources of cellular users (CUs). This optimization challenge is formulated as a mixed-integer nonlinear programming problem, known for its NP-hard and intractable nature. To address this issue, we propose a heuristic algorithm (HA) that decomposes the problem into two steps: power allocation and user pairing. The optimal power allocation is solved as a nonlinear programming problem by searching among a finite set, while the user pairing problem is addressed using the Kuhn–Munkres algorithm. The numerical results indicate that our proposed FD-MaxSumCell-HA (full-duplex UAVs maximizing the cell sum rate with a heuristic algorithm) scheme for FD-UAV D2D underlaying models outperforms HD-UAV underlaying cellular networks, with improved access rates for UAVs in FD-MaxSumCell-HA compared to HD-UAV networks.