Enhanced Multi-View Low-Rank Graph Optimization for Dimensionality Reduction

Author:

Li Haohao1,Wang Huibing2

Affiliation:

1. Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. College of Information and Science Technology, Dalian Maritime University, Dalian 116021, China

Abstract

In the last decade, graph embedding-based dimensionality reduction for multi-view data has been extensively studied. However, constructing a high-quality graph for dimensionality reduction is still a significant challenge. Herein, we propose a new algorithm, named multi-view low-rank graph optimization for dimensionality reduction (MvLRGO), which integrates graph optimization with dimensionality reduction into one objective function in order to simultaneously determine the optimal subspace and graph. The subspace learning of each view is conducted independently by the general graph embedding framework. For graph construction, we exploit low-rank representation (LRR) to obtain reconstruction relationships as the affinity weight of the graph. Subsequently, the learned graph of each view is further optimized throughout the learning process to obtain the ideal assignment of relations. Moreover, to integrate information from multiple views, MvLRGO regularizes each of the view-specific optimal graphs such that they align with one another. Benefiting from this term, MvLRGO can achieve flexible multi-view communication without constraining the subspaces of all views to be the same. Various experimental results obtained with different datasets show that the proposed method outperforms many state-of-the-art multi-view and single-view dimensionality reduction algorithms.

Funder

Science Foundation of Zhejiang Sci-Tech University

Publisher

MDPI AG

Reference47 articles.

1. Multi-view learning overview: Recent progress and new challenges;Zhao;Inf. Fusion,2017

2. Survey on deep multi-modal data analytics: Collaboration, rivalry, and fusion;Wang;ACM Trans. Multimed. Comput. Commun. Appl. (TOMM),2021

3. Towards Adaptive Consensus Graph: Multi-View Clustering via Graph Collaboration;Wang;IEEE Trans. Multimed.,2023

4. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns;Ojala;IEEE Trans. Pattern Anal. Mach. Intell.,2002

5. Dalal, N., and Triggs, B. (2005, January 20–25). Histograms of oriented gradients for human detection. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3