SIDGAN: Efficient Multi-Module Architecture for Single Image Defocus Deblurring

Author:

Ling Shenggui1ORCID,Zhan Hongmin1ORCID,Cao Lijia1ORCID

Affiliation:

1. School of Computer Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China

Abstract

In recent years, with the rapid developments in deep learning and graphics processing units, learning-based defocus deblurring has made favorable achievements. However, the current methods are not effective in processing blurred images with a large depth of field. The greater the depth of field, the blurrier the image, namely, the image contains large blurry regions and encounters severe blur. The fundamental reason for the unsatisfactory results is that it is difficult to extract effective features from the blurred images with large blurry regions. For this reason, a new FFEM (Fuzzy Feature Extraction Module) is proposed to enhance the encoder’s ability to extract features from images with large blurry regions. After using the FFEM during encoding, its PSNR (Peak Signal-to-Noise Ratio) is improved by 1.33% on the DPDD (Dual-Pixel Defocus Deblurring). Moreover, images with large blurry regions often cause the current algorithms to generate artifacts in their results. Therefore, a new module named ARM (Artifact Removal Module) is proposed in this work and employed during decoding. After utilizing the ARM during decoding, its PSNR is improved by 2.49% on the DPDD. After using the FFEM and the ARM simultaneously, compared to the latest algorithms, the PSNR of our method is improved by 3.29% on the DPDD. Following the previous research in this field, qualitative and quantitative experiments are conducted on the DPDD and the RealDOF (Real Depth of Field), and the experimental results indicate that our method surpasses the state-of-the-art algorithms in three objective metrics.

Funder

the Opening Project of International Joint Research Center of Robotics and Intelligence System of Sichuan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3