Abstract
Traffic sign recognition (TSR) is a noteworthy issue for real-world applications such as systems for autonomous driving as it has the main role in guiding the driver. This paper focuses on Taiwan’s prohibitory sign due to the lack of a database or research system for Taiwan’s traffic sign recognition. This paper investigates the state-of-the-art of various object detection systems (Yolo V3, Resnet 50, Densenet, and Tiny Yolo V3) combined with spatial pyramid pooling (SPP). We adopt the concept of SPP to improve the backbone network of Yolo V3, Resnet 50, Densenet, and Tiny Yolo V3 for building feature extraction. Furthermore, we use a spatial pyramid pooling to study multi-scale object features thoroughly. The observation and evaluation of certain models include vital metrics measurements, such as the mean average precision (mAP), workspace size, detection time, intersection over union (IoU), and the number of billion floating-point operations (BFLOPS). Our findings show that Yolo V3 SPP strikes the best total BFLOPS (65.69), and mAP (98.88%). Besides, the highest average accuracy is Yolo V3 SPP at 99%, followed by Densenet SPP at 87%, Resnet 50 SPP at 70%, and Tiny Yolo V3 SPP at 50%. Hence, SPP can improve the performance of all models in the experiment.
Funder
Ministry of Science and Technology, Taiwan
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献