Uniform Sampling Methodology to Construct Projection Matrices for Angle-of-Arrival Estimation Applications

Author:

Al-Sadoon Mohammed A. G.ORCID,de Ree MarcusORCID,Abd-Alhameed Raed A.ORCID,Excell Peter S.ORCID

Abstract

This manuscript firstly proposes a reduced size, low-complexity Angle of Arrival (AoA) approach, called Reduced Uniform Projection Matrix (RUPM). The RUPM method applies a Uniform Sampling Matrix (USM) criterion to sample certain columns from the obtained covariance matrix in order to efficiently find the directions of the incident signals on an antenna array. The USM methodology is applied to reduce the dependency between the adjacent sampled columns within a covariance matrix; then, the sampled matrix is used to construct the projection matrix. The size of the obtained projection matrix is reduced to minimise the computational complexity in the searching grid stage. A theoretical analysis is presented to demonstrate that the USM methodology can increase the Degrees of Freedom (DOFs) with the same aperture size and number of sampled columns compared to the classical sampling criterion. Then, a polynomial root is constructed as an alternative efficient computational solution of the UPM method in a one-dimensional (1D) array spectrum peak searching problem. It is found that this distribution increases the number of produced nulls and enhances noise immunity. The advantage of the RUPM method is that it is appropriate to apply for any array configuration while the Root-UPM offers better estimation accuracy with less execution time under a uniform linear array condition. A computer simulation based on various scenarios is performed to demonstrate the theoretical claims. The proposed direction-finding methods are compared with several AoA methods in terms of the required execution time, Signal-to-Noise Ratio (SNR) and different numbers of data measurements. The results verify that the new methods can achieve significantly better performance with reduced computational demands.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3