High-Resistance Grounding Fault Detection and Line Selection in Resonant Grounding Distribution Network

Author:

Yang Dong1,Lu Baopeng2,Lu Huaiwei1

Affiliation:

1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

2. School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

Abstract

The detection and selection of fault lines in resonant grounding distribution networks pose challenges due to the lack of sufficient state parameters and data. This paper proposes an approach to overcome these limitations by reconstructing the initial criterion for fault occurrence and fault line selection. Firstly, a combination of 15% of the traditional phase voltage and the sum of the zero-sequence voltage gradient is suggested as the initial criterion for fault occurrence. This improves the speed of the line selection device. Additionally, the transient process of high-resistance grounding in a resonant grounding system is analyzed based on the impedance characteristics of high- and low-frequency lines. The line selection criterion is then established by comparing the current and voltage derivative waveforms on high- and low-frequency lines. To verify the effectiveness of the proposed method, simulations are conducted. The results demonstrate that this method can effectively handle high-resistance grounding faults under complex conditions while meeting the required speed for line selection.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3