Explained Learning and Hyperparameter Optimization of Ensemble Estimator on the Bio-Psycho-Social Features of Children and Adolescents

Author:

Drobnič Franc1ORCID,Starc Gregor2,Jurak Gregor2,Kos Andrej1ORCID,Pustišek Matevž1ORCID

Affiliation:

1. Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia

2. Faculty of Sports, University of Ljubljana, 1000 Ljubljana, Slovenia

Abstract

For decades, projects have been carried out in various countries to assess the developmental status of children and adolescents using anthropometry and specific kinesiological measurements. There is a need for the ability to evaluate this developmental status using a sufficiently simple method or a calculation to be applicable in practice. The most commonly used feature for this purpose is currently body mass index (BMI). From recent experience, this feature may cause problems if used indiscriminately in the developmental phase of life. Therefore, we aimed to find a more suitable feature set. We used data from Artos, the national program monitoring school children and adolescents in Slovenia. The data was analyzed using machine learning (ML) tools to find the most important features to predict a motor efficiency index (MEI), which has been shown to correlate strongly with a person’s health prospects. After data preparation and training a baseline model, a feature selection process was performed, which promoted some features as candidates to predict the motor efficiency index sufficiently. By implementing a hyperparameter optimization, we tuned the ML model to improve its generalization and present the feature interaction more elaborately. We show that besides the single feature’s importance, the features’ interaction should be considered. In the case of MEI, we find that the skin fold thicknesses can complement BMI and contribute to a better development status assessment of children and adolescents.

Funder

Slovenian Research and Innovation Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3