Affiliation:
1. Department of Physics, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
2. Microelectronics and Semiconductors Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
Abstract
This study focuses on the preparation of LaXO3(X=Fe,Mn,Cr,Ni) perovskite thin films using a simple set-up spin coating technique and the evaluation of their properties for application in switching memory devices. The properties of as-deposited films were thoroughly characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-Vis spectroscopy, and a vibrating sample magnetometer (VSM). The results obtained revealed that the as-deposited films have a polycrystalline cubic structure. The film surfaces were uniform and densely packed without any voids, cracks, or pinholes. In addition, irregularly shaped grains were observed having an average size of 140, 120, 89, and 70 nm for LaFeO3, LaMnO3, LaCrO3, and LaNiO3 films, respectively. VSM analysis demonstrated that LaFeO3 film exhibited superior magnetic properties compared to the other films. Furthermore, memory devices with Au/LaXO3(X=Fe,Mn,Cr,Ni)/FTO structures were fabricated, and their I-V characteristics were measured. In order to assess their performance, an endurance test was conducted. The findings indicated that Au/LaFeO3/FTO device exhibited higher RHRSRLRS ratio (~7×105), low Set/Reset voltages, lower power consumption (2.7×10−4 W), and stable endurance with no significant degradation was observed in the LRS and HRS after 20 sweep cycles. These favorable parameters can be attributed to the reduced thickness, larger grain size, and excellent magnetic properties of the active-layer LaFeO3. Moreover, the conduction mechanism of the fabricated devices was investigated, revealing that the conduction in the LRS is primarily dominated by Ohmic behavior, while the HRS exhibited different conduction mechanisms.
Funder
Deanship of Scientific Research, Qassim University, Saudi Arabia
Qassim University, represented by the Deanship of Scientific Research
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering