Efficient Hyperbolic Perceptron for Image Classification

Author:

Ahsan Ahmad Omar1ORCID,Tang Susanna2,Peng Wei3ORCID

Affiliation:

1. Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada

2. Fatima Fellowship, USA

3. Stanford Medicine, Stanford University, Stanford, CA 94305, USA

Abstract

Deep neural networks, often equipped with powerful auto-optimization tools, find widespread use in diverse domains like NLP and computer vision. However, traditional neural architectures come with specific inductive biases, designed to reduce parameter search space, cut computational costs, or introduce domain expertise into the network design. In contrast, multilayer perceptrons (MLPs) offer greater freedom and lower inductive bias than convolutional neural networks (CNNs), making them versatile for learning complex patterns. Despite their flexibility, most neural architectures operate in a flat Euclidean space, which may not be optimal for various data types, particularly those with hierarchical correlations. In this paper, we move one step further by introducing the hyperbolic Res-MLP (HR-MLP), an architecture extending the attention-free MLP to a non-Euclidean space. HR-MLP leverages fully hyperbolic layers for feature embeddings and end-to-end image classification. Our novel Lorentz cross-patch and cross-channel layers enable direct hyperbolic operations with fewer parameters, facilitating faster training and superior performance compared to Euclidean counterparts. Experimental results on CIFAR10, CIFAR100, and MiniImageNet confirm HR-MLP’s competitive and improved performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference60 articles.

1. Dalal, N., and Triggs, B. (2005, January 20–26). Histograms of oriented gradients for human detection. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA.

2. Ahonen, T., Hadid, A., and Pietikäinen, M. (2004, January 11–14). Face recognition with local binary patterns. Proceedings of the Computer Vision-ECCV 2004: 8th European Conference on Computer Vision, Prague, Czech Republic. Proceedings, Part I 8.

3. Lindeberg, T. (2023, September 20). Scale Invariant Feature Transform. Available online: http://www.scholarpedia.org/article/Scale_Invariant_Feature_Transform.

4. Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012). Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst., 25.

5. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., and Gelly, S. (2021, January 4). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. Proceedings of the International Conference on Learning Representations 2021, Vienna, Austria.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3