A Neural Multi-Objective Capacitated Vehicle Routing Optimization Algorithm Based on Preference Adjustment

Author:

Wang Liting1,Song Chao1,Sun Yu2,Lu Cuihua1,Chen Qinghua1

Affiliation:

1. The Third Faculty, Naval Aviation University, Yantai 264001, China

2. Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China

Abstract

The vehicle routing problem (VRP) is a common problem in logistics and transportation with high application value. In the past, many methods have been proposed to solve the vehicle routing problem and achieved good results, but with the development of neural network technology, solving the VRP through neural combinatorial optimization has attracted more and more attention by researchers because of its short inference time and high parallelism. PMOCO is the most state-of-the-art multi-objective vehicle routing optimization algorithm. However, in PMOCO, preferences are often uniformly selected, which may lead to uneven Pareto sets and may reduce the quality of solutions. To solve this problem, we propose a multi-objective vehicle routing optimization algorithm based on preference adjustment, which is improved from PMOCO. We incorporate the weight adjustment method in PMOCO that is able to adapt to different approximate Pareto fronts and to find solutions with better quality. We treat the weight adjustment as a sequential decision process and train it through deep reinforcement learning. We find that our method could adaptively search for a better combination of preferences and have strong robustness. Our method is experimented on multi-objective vehicle routing problems and obtained good results (about 6% improvement compared with PMOCO with 20 preferences).

Funder

Natural Science Foundation of China.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3