A Simplified Design Method for Quasi-Resonant Inverter Used in Induction Hob

Author:

Ozturk Metin12ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Istanbul Esenyurt University, 34510 Istanbul, Turkey

2. Department of Research and Development, Mamur Technology Systems Inc., 34590 Istanbul, Turkey

Abstract

Induction heating (IH) technology is widely recognized and utilized in residential applications due to its high efficiency and safe operating characteristics. Resonant inverter circuits are widely used in IH systems because of their high efficiency and ability to perform soft switching. Among the various resonant inverters used in IH systems, the single-switch quasi-resonant (SSQR) inverter topology is typically preferred for low-cost and low-output-power applications. Despite its cost advantage, the SSQR topology has a relatively narrow soft-switching range, which can be unstable depending on the electrical parameters of the load and the resonant converter circuit. Accurately determining the capacitance value of the resonant capacitor and the inductance value of the induction coil, which are the key circuit elements of the SSQR induction cooker, is crucial for designing a reliable, efficient, and durable cooking system. In other words, there exists a critical relationship between the resonant converter circuit parameters, load characteristics, and safe operating conditions. Additionally, when considering closed-loop control methods used for power control and safety, selecting appropriate resonant circuit elements becomes vital in ensuring both reliable and efficient operation. This paper focuses on a novel and simplified design method for the SSQR inverter utilized in household appliances. The proposed method and its advantages in terms of the safe operating area of the switch are theoretically investigated and verified through simulations and prototype circuits.

Funder

Scientific and Technological Research Council of Turkey

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3