A Fast Adaptive Binarization Method for QR Code Images Based on Dynamic Illumination Equalization

Author:

Chen Rongjun1,Huang Yue1,Lan Kailin1,Li Jiawen12ORCID,Ren Yongqi1,Hu Xianglei1ORCID,Wang Leijun1,Zhao Huimin1,Lu Xu1

Affiliation:

1. School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou 510665, China

2. Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China

Abstract

The advancement of Internet of Things (IoT) has enhanced the extensive usage of QR code images in various computer vision applications. Nonetheless, this has also brought forth several technical challenges. In particular, the logistics sorting system often encounters issues such as a low recognition rate and slow processing speed when dealing with QR code images under complex lighting conditions like uneven illumination. To address these difficulties, a method that focuses on achieving a fast adaptive binarization of QR code images through dynamic illumination equalization was proposed. First, an algorithm based on edge enhancement to obtain the position detection patterns within QR code images was applied, which enabled the acquisition of structural features in uneven illumination. Subsequently, QR code images with complex lighting conditions can achieve a fast adaptive binarization through dynamic illumination equalization. As for method validation, the experiments were performed on the two datasets that include QR code images influenced by strong light, weak light, and different shadow degrees. The results disclosed the benefits of the proposed method compared to the previous approaches; it produced superior recognition rates of 78.26–98.75% in various cases through commonly used decoders (Wechat and Zxing), with a faster processing speed of 0.0164 s/image, making it a proper method to satisfy real-time requirements in practical applications, such as a logistics sorting system.

Funder

National Natural Science Foundation of China

Special Projects in Key Fields of Ordinary Universities of Guangdong Province

Guangzhou Science and Technology Plan Project

Research Fund of the Guangxi Key Lab of Multi-source Information Mining & Security

Guangdong Province Ordinary Colleges and Universities Young Innovative Talents Project

Special Project Enterprise Sci-tech Commissioner of Guangdong Province

Key Discipline Improvement Project of Guangdong Province

Research Fund of Guangdong Polytechnic Normal University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3