Evaluation of Electromagnetic Fields of Extremely Low-Frequency Horizontal Electric Dipoles at Sea–Air Boundaries

Author:

Hu Sumou1ORCID,Xie Hui1ORCID,Li Zhangming1

Affiliation:

1. College of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China

Abstract

The technologies of undersea detection and communication, seabed sensor networks, and geophysical detection using electromagnetic waves have emerged as research focal points within the field of marine science and engineering. However, most studies have focused on the propagation of electromagnetic fields over long distances within the shallow “sea-seabed” environment. This paper introduces a quasi-static approximation method to address the Sommerfeld numerical integration challenge within the near-field region, employing the horizontal electric dipole (HED) as a model. It derives the Sommerfeld numerical integral expressions under conditions where the wave-number ratio at the “seawater-air” boundary does not adhere to the requirement of |k0/k1| << 1 (where subscripts 0 and 1 denote seawater and air media, respectively). Building upon this, the paper simplifies the Bessel-Fourier infinite integral term within the integral expression to obtain Sommerfeld numerical integral approximations for the propagation of electromagnetic fields in the near region of extremely low frequency (ELF) within seawater. The study further conducts simulations and calculations to determine amplitude variations in electromagnetic field intensity generated by an ELF HED at different frequencies, dipole heights, and observation point depths. It concludes with an analysis of electromagnetic field propagation characteristics at the seawater-air boundary. Experimental findings highlight the lateral wave as the primary mode of electromagnetic wave propagation at this interface.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3