Affiliation:
1. School of Mechanical and Electrical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
2. College of Electrical Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
Abstract
In this study, an enhanced hybrid Grey Wolf Optimization algorithm (HI-GWO) is proposed to address the challenges encountered in traditional swarm intelligence algorithms for mobile robot path planning. These challenges include low convergence accuracy, slow iteration speed, and vulnerability to local optima. The HI-GWO algorithm introduces several key improvements to overcome these limitations and enhance performance. To enhance the population diversity and improve the initialization process, Gauss chaotic mapping is applied to generate the initial population. A novel nonlinear convergence factor is designed to strike a balance between global exploration and local exploitation capabilities. This factor enables the algorithm to effectively explore the solution space while exploiting the promising regions to refine the search. Furthermore, an adaptive position update strategy is developed by combining Levy flight and golden sine. This strategy enhances the algorithm’s solution accuracy, global search capability, and search speed. Levy flight allows longer jumps to explore distant regions, while golden sine guides the search towards the most promising areas. Extensive simulations on 16 standard benchmark functions demonstrate the effectiveness of the proposed HI-GWO algorithm. The results indicate that the HI-GWO algorithm outperforms other state-of-the-art intelligent algorithms in terms of optimization performance. Moreover, the performance of the HI-GWO algorithm is evaluated in a real-world path planning experiment, where a comparison with the traditional grey wolf algorithm and ant colony algorithm validates the superior efficiency of the improved algorithm. It exhibits excellent optimization ability, robust global search capability, high convergence accuracy, and enhanced robustness in diverse and complex scenarios. The proposed HI-GWO algorithm contributes to advancing the field of mobile robot path planning by providing a more effective and efficient optimization approach. Its improvements in convergence accuracy, iteration speed, and robustness make it a promising choice for various practical applications.
Funder
National Natural Science Foundation of China
Natural Science Foundation of the Jiangsu Higher Education Institutions of China
Science Research Project of Xuzhou University of Technology
Jiangsu Industry University Research Cooperation Projects
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献