Broadband Modelling of Power Transformers for Sweep Frequency Impedance Studies on Winding Short-Circuit Faults

Author:

Liu Yong1ORCID,Li Cheng1,Guo Zhe1,Ren Fuqiang2,Liu Fei3,Fu Yizhe1,Zhu Yongsheng1,Wang Xiaolei1

Affiliation:

1. School of Electronics and Information, Zhongyuan University of Technology, Zhengzhou 450007, China

2. School of Electrical Engineering, Shandong University, Jinan 250002, China

3. School of Computer Science, Zhongyuan University of Technology, Zhengzhou 450007, China

Abstract

To study sweep frequency impedance (SFI) features of short-circuit (SC) faults easily, this paper proposes a broadband electric circuit model of a transformer winding and solves its three key problems. The first problem is the calculation of lumped-circuit parameters considering frequency-dependent complex anisotropic permeabilities (FDCAPs), which are caused by the physical characteristics, such as skin, proximity, and geometrical effects and anisotropic properties, of the transformer core and winding materials. The other issue is the establishment of the electric circuit model based on the SFI measurement connection mode, the transformer winding parameters, and a double-ladder network (DLN). Another issue is the construction of the state-space model of the electric circuit toward different SFI values to obtain all network branch voltages and currents. The accuracy of the proposed model is assessed by comparing its SFI signatures with those of the simulation model, without considering FDCAPs under healthy winding, and the corresponding physical transformer model during healthy winding and SC faults. It is observed that the SFI results of the proposed model are closer to the experimental measurements, and the model can be effectively used to study the SFI features of SC faults. Moreover, the impacts of different types of SC faults on the SFI data are concluded in this paper.

Funder

Key Scientific Research Project of Colleges and Universities in Henan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3