Smart-Object-Based Reasoning System for Indoor Acoustic Profiling of Elderly Inhabitants

Author:

Chin JeannetteORCID,Tisan AlinORCID,Callaghan VictorORCID,Chik David

Abstract

Many countries are facing significant challenges in relation to providing adequate care for their elderly citizens. The roots of these issues are manifold, but include changing demographics, changing behaviours, and a shortage of resources. As has been witnessed in the health sector and many others in society, technology has much to offer in terms of supporting people’s needs. This paper explores the potential for ambient intelligence to address this challenge by creating a system that is able to passively monitor the home environment, detecting abnormal situations which may indicate that the inhabitant needs help. There are many ways that this might be achieved, but in this paper, we will describe our investigation into an approach involving unobtrusively ’listening’ to sound patterns within the home, which classifies these as either normal daily activities, or abnormal situations. The experimental system we built was composed of an innovative combination of acoustic sensing, artificial intelligence (AI), and the Internet-of-Things (IoT), which we argue in the paper that it provides a cost-effective approach to alerting care providers when an elderly person in their charge needs help. The majority of the innovation in our work concerns the AI in which we employ Machine Learning to classify the sound profiles, analyse the data for abnormal events, and to make decisions for raising alerts with carers. A Neural Network classifier was used to train and identify the sound profiles associated with normal daily routines within a given person’s home, signalling departures from the daily routines that were then used as templates to measure deviations from normality, which were used to make weighted decisions regarding calling for assistance. A practical experimental system was then designed and deployed to evaluate the methods advocated by this research. The methodology involved gathering pre-design and post-design data from both a professionally run residential home and a domestic home. The pre-design data gathered the views on the system design from 11 members of the residential home, using survey questionnaires and focus groups. These data were used to inform the design of the experimental system, which was then deployed in a domestic home setting to gather post-design experimental data. The experimental results revealed that the system was able to detect 84% of abnormal events, and advocated several refinements which would improve the performance of the system. Thus, the research concludes that the system represents an important advancement to the state-of-the-art and, when taken together with the refinements, represents a line of research which has the potential to deliver significant improvements to care provision for the elderly.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference51 articles.

1. Global Demographic Change: Dimensions and Economic Significance;Bloom,2004

2. Perceived Risks to Independent Living: The Views of Older, Community-Dwelling Adults

3. More Than Half of England’s Coronavirus-Related Deaths Will Be People from Care Homeshttps://www.theguardian.com/society/2020/jun/07/more-than-half-of-englands-coronavirus-related-deaths-will-be-people-from-care-homes

4. The Internet-of-Things: Reflections on the past, present and future from a user-centered and smart environment perspective

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3