An Ultra-Wideband Compact TR Module Based on 3-D Packaging

Author:

Li Zhiqiang,Sun Houjun,Wu Hongjiang,Zhang Shuai

Abstract

This study presents a novel four-channel tile-type T/R module which achieves excellent performances in ultra-wideband (2–12 GHz) and integrates all circuits in a super-light (25 g) and compact (27.8 × 27.8 × 12 mm3) mechanical structure in active phased array systems. The key advancement of this T/R module was to choose a Ball Grid Array (BGA) as the vertical interconnection and bracing between High-Temperature Co-fired Ceramic (HTCC) substrates in order to achieve a high-integration 3-D structure. Exploiting the HTCC multilayer layout, this paper presents the design and development of an ultra-wideband, compact and light, high-output power, four-channel, dual-polarization Transmit/Receive (T/R) Module. In this module, microwave circuits and power control circuits are highly integrated into electrically isolated HTCC layers or substrates, resulting in low coupling and crosstalk between signals. Furthermore, multichip assembly technology, multifunctional MMICs, and other high-integration technologies were adopted for this module. Each channel could provide more than 2 W transmit output power, more than 15 dB receive gain, and less than 5 dB receive noise figure. Every module contains four channels. The power supply and phase/amplitude conditioning of each channel can be controlled individually and showed good consistency of the amplitude and phase of all channels. The connectors of manifold port and polarization ports are all SSMP, which can achieve further integration. This module has also an automatic negative power protection function. The module has stabilized performance and mass production prospects.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Ka-Band Two-Channel Two-Beam Receiver Based on a Substrate-Integrated Suspended Line;Electronics;2024-04-21

2. Integration of RF and Digital Technologies - The Revolution of RFSoC Technologies in RF Sampling and Tile-Based T/R Module Technologies;2024 IEEE 3rd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA);2024-02-27

3. A Ku band instantaneous wideband SIP integrated microwave receiver for phase interferometer;IEICE Electronics Express;2024-01-25

4. A Miniaturized Tile-Type T/R Module with Four Channels in Ka Band;2023 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP);2023-11-13

5. Design of a X-band miniaturized T/R module based on LTCC substrate;2022 Asia-Pacific Microwave Conference (APMC);2022-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3