State of the Art of Urban Smart Vertical Farming Automation System: Advanced Topologies, Issues and Recommendations

Author:

Saad Mohamad Hanif Md,Hamdan Nurul Maisarah,Sarker Mahidur R.

Abstract

The global economy is now under threat due to the ongoing domestic and international lockdown for COVID-19. Many have already lost their jobs, and businesses have been unstable in the Corona era. Apart from educational institutions, banks, privately owned institutions, and agriculture, there are signs of economic recession in almost all sectors. The roles of modern technology, the Internet of things, and artificial intelligence are undeniable in helping the world achieve economic prosperity in the post-COVID-19 economic downturn. Food production must increase by 60% by 2050 to meet global food security demands in the face of uncertainty such as the COVID-19 pandemic and a growing population. Given COVID 19’s intensity and isolation, improving food production and distribution systems is critical to combating hunger and addressing the double burden of malnutrition. As the world’s population is growing day by day, according to an estimation world’s population reaches 9.6 billion by 2050, so there is a growing need to modify the agriculture methods, technologies so that maximum crops can be attained and human effort can be reduced. The urban smart vertical farming (USVF) is a solution to secure food production, which can be introduced at any adaptive reuse, retrofit, or new buildings in vertical manners. This paper aims to provide a comprehensive review of the concept of USVF using various techniques to enhance productivity as well as its types, topologies, technologies, control systems, social acceptance, and benefits. This review has focused on numerous issues, challenges, and recommendations in the development of the system, vertical farming management, and modern technologies approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3