Intelligent Measurement of Morphological Characteristics of Fish Using Improved U-Net

Author:

Yu Chuang,Hu ZhuhuaORCID,Han Bing,Wang PengORCID,Zhao Yaochi,Wu HuamingORCID

Abstract

In the smart mariculture, batch testing of breeding traits is a key issue in the breeding of improved fish varieties. The body length (BL), body width (BW) and body area (BA) features of fish are important indicators. They are of great significance in breeding, feeding and classification. To accurately and intelligently obtain the morphological characteristic sizes of fish in actual scenes, data augmentation is first used to greatly expand the published fish dataset, thereby ensuring the robustness of the training model. Then, an improved U-net segmentation and measurement algorithm is proposed, which uses a dilated convolution with a dilation rate 2 and a convolution to partially replace the convolution in the original U-net. This operation can enlarge the partial convolution receptive field and achieve more accurate segmentation for large targets in the scene. Finally, a line fitting method based on the least squares method is proposed, which is combined with the body shape features of fish and can accurately measure the BL and BW of inclined fish. Experimental results show that the Mean Intersection over Union (mIoU) is 97.6% and the average relative error of the area is 0.69%. Compared with the unimproved U-net, the average relative error of the area is reduced to about half. Moreover, with the improved U-net and the line fitting method, the average relative error of BL and the average relative error of BW of inclined fish decrease to 0.37% and 0.61%, respectively.

Funder

Natural Science Foundation of Hainan Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3