Making Sense of Complex Sensor Data Streams

Author:

Liu RongrongORCID,Dresp-Langley BirgittaORCID

Abstract

This concept paper draws from our previous research on individual grip force data collected from biosensors placed on specific anatomical locations in the dominant and non-dominant hand of operators performing a robot-assisted precision grip task for minimally invasive endoscopic surgery. The specificity of the robotic system on the one hand, and that of the 2D image-guided task performed in a real-world 3D space on the other, constrain the individual hand and finger movements during task performance in a unique way. Our previous work showed task-specific characteristics of operator expertise in terms of specific grip force profiles, which we were able to detect in thousands of highly variable individual data. This concept paper is focused on two complementary data analysis strategies that allow achieving such a goal. In contrast with other sensor data analysis strategies aimed at minimizing variance in the data, it is necessary to decipher the meaning of intra- and inter-individual variance in the sensor data on the basis of appropriate statistical analyses, as shown in the first part of this paper. Then, it is explained how the computation of individual spatio-temporal grip force profiles allows detecting expertise-specific differences between individual users. It is concluded that both analytic strategies are complementary and enable drawing meaning from thousands of biosensor data reflecting human performance measures while fully taking into account their considerable inter- and intra-individual variability.

Funder

University of Strasbourg

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference42 articles.

1. Enabling Communication Technologies for Smart Cities

2. Wireless sensor networks for monitoring of large public buildings;Dermibas;Comput. Netw.,2005

3. Life cycle assessment and tempo-spatial optimization of deploying dynamic wireless charging technology for electric cars

4. Wireless Technology Use and Disability: Results from a National Surveyhttp://scholarworks.csun.edu/handle/10211.3/121967

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3