New Insight on Terahertz Rectification in a Metal–Oxide–Semiconductor Field-Effect Transistor Structure

Author:

Palma FabrizioORCID

Abstract

The use of a metal–oxide–semiconductor field-effect transistor (MOS-FET) permits the rectification of electromagnetic radiation by employing integrated circuit technology. However, obtaining a high-efficiency rectification device requires the assessment of a physical model capable of providing a qualitative and quantitative explanation of the processes involved. For a long time, high-frequency detection based on MOS technology was explained using plasma wave detection theory. In this paper, we review the rectification mechanism in light of high-frequency numerical simulations, showing features never examined until now. The results achieved substantially change our understanding of terahertz (THz) rectification in semiconductors, and can be interpreted by the model based on the self-mixing process in the device substrate, providing a new and essential tool for designing this type of detector.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theoretical Analysis of the Time Transient of the THz Self-Mixing Rectification Voltage in a Semiconductor Barrier;Electronics;2023-03-07

2. Thermoemission-Based Model of THz Detection and Its Validation—JLFET Case Studies;IEEE Transactions on Terahertz Science and Technology;2022-11

3. A Novel THz CMOS Chip Composed of 64 Antenna-Detectors Array toward 6G Applications;2022 61st FITCE International Congress Future Telecommunications: Infrastructure and Sustainability (FITCE);2022-09-29

4. Field-Effect Transistors as THz radiation detectors;2022 IEEE Latin American Electron Devices Conference (LAEDC);2022-07-04

5. Fast Time Response of THz detection in JLFET;2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz);2021-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3